THE MIND & THE SCIENCE OF SUCCESS

- All rights reserved -

- APPENDIX -

MAYARD'S PROBLEM SOLVING METHOD

4 simple steps

- U: Understand the problem and the question to be resolved
- I: Identify the variables and the data provided in the question.
- $\mathbf{S}:\mathbf{S}\mathbf{t}\mathbf{a}\mathbf{r}\mathbf{t}$ to solve with what you know

V: Verify your answer

<u>Note</u>: A sample of word problems from high school (2nd cycle) to college level is used to illustrate this simple method that can also be used in all grade levels.

Math-Grade 9

A cylindrical can contains 3 tennis balls with a radius of 4 cm as illustrated bellow:

. What is the volume of the unoccupied space in the cylinder ?

Solution:

1. U: Understand the problem and the question

We want to find the volume of the unoccupied space (Vu)

2. I: Identify the variable and the data

 $\mathbf{r}_{\text{tennis}} = \mathbf{r}_{\text{sphere}} = 4 \text{ cm}; \mathbf{r}_{\text{cylinder}} = 4 \text{ cm}; \mathbf{h}_{\text{cylinder}} = ?$

THE MIND & THE SCIENCE OF SUCCESS

- All rights reserved -

3.S: start to solve with what you know

<u>**Remark**</u>: Starting with what you know will enable you to see the other steps that must be completed.

• The unoccupied volume in the cylinder is given by

the following operation:

 $V_u = V_{cylinder} - 3V_{sphere} \implies Next step: find V_{cylinder} and V_{sphere}$

• The volume of the cylinder is given by the following formula:

$$\begin{split} V_{cylinder} &= A_b \times h_{cylinder} \\ V_{cylinder} &= \pi 4^2 \times (4 \times 2 \times 3) \\ V_{cylinder} &= 384 \pi cm^3 \end{split} \tag{hcylinder} = 3 \text{ times the diameter of the tennis ball)} \end{split}$$

• The volume of 1 sphere is given by the following formula:

$$V_{sphere} = \frac{4\pi r^3}{3}$$
$$V_{sphere} = \frac{4\pi \times 4^3}{3}$$
$$V_{sphere} = \frac{256\pi}{3} cm^3$$

• The unoccupied volume in the cylinder is:

$$V_u = V_{cylinder} - 3V_{sphere}$$
$$V_u = 384\pi - \frac{3 \times 256\pi}{3}$$
$$V_u = 128\pi \approx 402.12 cm^3$$

4. Verification

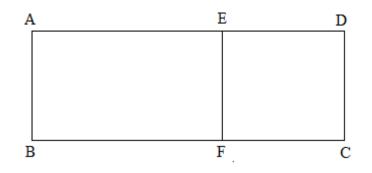
The answer makes sense if the unoccupied volume (Vu) is smaller then the volume of the cylinder ($V_{cylinder}$) and the volume of the 3 spheres ($3V_{sphere}$). Let's verify?

$$V_u = 128\pi cm^3 < V_{cylinder} = 384\pi cm^3 \text{ and } V_u = 128\pi cm^3 < 3V_{sphere} = 256\pi cm^3$$
 (yes)

Scientific Math – Grade 10 (Multiple steps problem)

Consider the rectangle ABFE and the square CDEF below. The segment AE has 2 units more than segment ED .

If the area of rectangle ABCD is $40 cm^2$, what is the numerical value of the area of the rectangle ABFE.



<u>Solution</u>

U: understand the problem and the question to solve. Problem : this situation involves algebraic concepts Question to be resolved: Find the area (quantitative value) of rectangle ABFE

2. I: Identify the variables and the important data Segment AE : 2 units more than segment ED

Area of rectangle ABCD is : $40 \ cm^2$

3. S: start with what you know

<u>Remark</u>: Starting with what you know will enable you to see the other steps that must be completed.

• Area of rectangle ABCD :

Aire ABCD = Length x width \Rightarrow therefore we need to find the length (L) and the width (W):

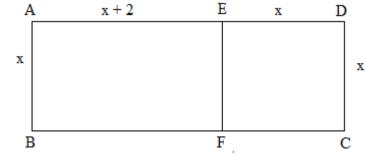
if $ED = x \implies AE = x + 2$ \Rightarrow Length of AD = AE + ED = (x + 2) + x = 2x + 2

 \Rightarrow Width AB = x (Since CDEF is a square)

THE MIND & THE SCIENCE OF SUCCESS

- All rights reserved -

• Now we can find the area:



Area of rectangle ABCD = $(2x+2) \bullet x = 2x^2 + 2x$ $40 = 2x^2 + 2x$ $0 = 2x^2 + 2x - 40$ Now we use the quadratic formula: a = 2 b = 2 c = -40 $\Delta = b^2 - 4ac$

$$= 4-4(2) (-40)$$

= 324

$$\Rightarrow \begin{array}{l} x = \frac{-b \pm \sqrt{\Delta}}{2a} \\ x = \frac{-2 \pm \sqrt{324}}{2(2)} \\ x = 4 \end{array} \quad \text{Or } x = -5 \text{ (rejected)} \end{array}$$

$$\Rightarrow$$
 AE = x + 2 = 4+2 = 6 cm

Area of rectangle ABFE :

Area of ABFE = $x(x+2) = 4(6) = 24cm^2$

4.Verify your answer

• Does segment AE have 2 more units than segment ED? ED = 4 cm and AE = 6 cm (yes)

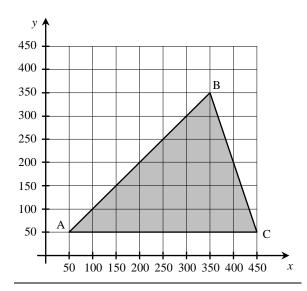
• Is the area of rectangle ABCD 40 cm^2 ?

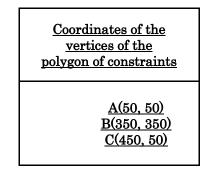
$$ABCD = (2x+2) \bullet x$$

ABCD = $[2(4) + 2] \bullet 4 = 40 \ cm^2$ (yes)

Scientific /Cultural Math – Grade 11

A large boat transports people and motorcycles. Polygon of constraints ABC below is based on the constraints the transport company must take into account in order to make each crossing profitable.





x[∶] number of people aboard for each crossing *y*[∶] number of motorcycles aboard for each crossing

The fare is \$4 per person and \$10 per motorcycle.

To ensure profitability, the company must take into account a new constraint represented by the rule $x + y \ge 300$.

By how much does this new constraint increase the minimum revenue for each crossing?

Solution:

1. U: Understand the problem and the question

Problem : this situation involves the notion of optimization Question to be resolved: Find the increase in the minimum revenue that is the difference between the minimum revenue with the new constraint and without it.

2. I: Identify the variable and the data

x: number of people aboard for each crossing *y*: number of motorcycles aboard for each crossing Fare is \$4 per person and \$10 per motorcycle \Rightarrow Function rule: P = 4x +10y

Added constraint: $x + y \ge 300$

3.S: start to solve with what you know

<u>**Remark**</u>: Starting with what you know will enable you to see the other steps that must be completed.

• The increase in the minimum revenue (M) is given by the following operation:

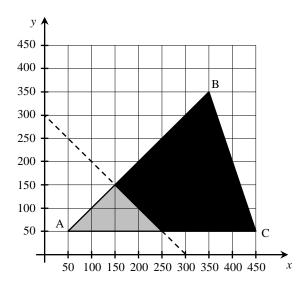
 $M_{\text{increase}} = M_{\text{with new constraint}} - M_{\text{without new constraint}} \Rightarrow \text{Next steps: Find the minimum revenue without the new constraint and with the new constraint.}$

• The minimum revenue **without** the new constraint is found with the function rule:

Vertex	Revenue: $4x + 10y$	
A(50, 50)	\$700	← Minimum
B(350, 350)	\$4900	
C(450, 50)	\$2300	

• The minimum revenue **with** the new constraint is found with the graph and function rule:

New constraint : $x + y \ge 300$



The coordinates of the 2 new vertices are (150, 150) and (250, 50).

We use the function rule to find the minimum revenue with the new constraint:

Vertices	Revenue: $4x + 10y$	
(150, 150)	\$2100	
B(350, 350)	\$4900	
C(450, 50)	\$2300	
(250, 50)	\$1500	← Minimum

 \bullet The increase in the minimum revenue M_{increase} is :

$$\begin{split} M_{\text{increase}} &= M_{\text{with new constraint}} - M_{\text{without new constraint}} \\ M_{\text{increase}} &= \$1500 - \$700 \\ M_{\text{increase}} &= \$0000 \end{split}$$

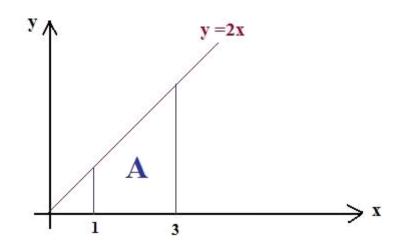
$M_{\rm increase} = \$800$

4.Verification

The answer makes sense if the minimum revenue with the new constraint is greater than the minimum revenue without the new constraint. Let's verify? $M_{\text{with new constraint}} = \$1500 > M_{\text{without new constraint}} = \700 (yes)

Calculus II – College

Given the graph below:



Find the area of the geometric figure bounded by the function y = 2x and the equations x = 1 and x = 3.

Solution

1.U: Understand the problem and the question

Problem: This situation involves the concept of definite integral and the notion of area under the curve.

Question to be resolved: We want to find the area under the linear function which has specific interval

2. I: Identify the variable and the data

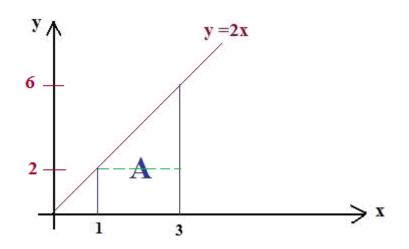
function: y = 2x; slices along x: dx; interval: [1, 3]

3.S: start to solve with what you know

• The area (A) is given by the definite integral : $A = \int_{1}^{3} 2x \, dx$ $A = \Big|_{1}^{3} (x^{2})$ (By rule of integration) $A = (3^{2}) - (1^{2}) = 8u^{2}$

4. Verification

• The area found with integration should also be equal to the sum of the area of the square and the area of the triangle.



Let's verify: $A_{integration} = A_{square} + A_{triangle}$ $A_{integration} = (2 \times 2) + (\frac{2 \times 4}{2})$ $A_{integration} = 4 + 4 = 8u^2$ (yes)